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Abstract

In this paper we use Gauss map to study spacelike submanifolds in de Sitter space form. We prove
that if there exisp > 0 and a fixed unit simplex(+ 1)-vectora G,’;lyp such that the Gauss mgp
of ann-dimensional complete and connected spacelike submanifélh S;’,*l’ satisfies(g, a) < p,
thenM" is diffeomorphic toS”, and its volume satisfies val()/p < vol(M) < p"vol(S"). We also
characterize the case where these inequalities become equalities.
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1. The main result

Let R’;,J””Jrl be the ¢ + p + 1)-dimensional connected pseudo-Euclidean space with
indexp, that is, the real vector spad@*?+1 endowed with the pseudo-Euclidean metric
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tensor(, ) given by

n+1 n+p+1
(v, w) = § viw; — E Vg Wers
i=1 a=n+2

and letS),"” be the 4 + p)-dimensional de Sitter space form with indexhat is,
SPP = {x e RAPPYL: (x,x) = 1)
A smooth immersiony : M" — SZ” of ann-dimensional connected manifold” is said
to be a spacelike submanifold if the induced metricywig a Riemannian metric ow”.
As is usual, the spacelike submanifold is said to be complete if the Riemannian induced
metric is a complete metric ol”.

Recently Aledo and Aas[1] used Gauss map image to study the topology and volume
of complete spacelike hypersurfaces in de Sitter space and proved that a complete space-
like hypersurfaceM” in de Sitter space whose image under the Gauss map is contained
in a hyperbolic geodesic ball of radiysis necessarily compact and its volume satis-
fies vol(§™)/ coshp < vol(M™) < vol(S™) cost o. They also characterized the case where
these inequalities become equalities. The main aim of this paper is to consider the similar
problem in higher codimension. More precisely, we shall prove the following.

Main Theorem. Lety : M" — Si™? c R%5"7*! pe an n-dimensional complete spacelike
submanifold in de Sitter space forﬂﬁfr”. If there existp > 0 and a fixed unit simple
(r? + 1)—vect9ra € GfH’p such that the Gaugs map gofsatisfiesg, a) < p, thenM" is
diffeomorphic taS”, and the volume off" satisfies

vol(5™)/p < vol(M™) < p"vol(s"). (1)

Moreover vol(M"™) = p"vol(S") if and only ify(M™) is a totally umbilical n-sphere with
radius p, whilevol(M™) = vol(S™)/p if and only ifp = 1, andy(M") is a totally geodesic
n-sphere

We shall prove the Main Theorem in Section 3, here we give some simple applications
as following.

Corollary 1. The only complete spacelike surfag¢es= 2) with parallel mean curvature
in de Sitter spacéﬁ”’ whose Gauss map is bounded are the umbilical 2-spheres.

Proof. From the Main Theorem we know that the surface is in fact compact. The result
then follows from Theorem 5.3 if2] or Corollary 9 in[3]. O

Corollary 2. LetM" be a complete spacelike n-submanifold with parallel mean curvature
in de Sitter spacé}’f” whose Gauss map is bounded. If the normal connectigv’ofs
flat, thenM" is a totally umbilical n-sphere.

Proof. From the Main Theorem we know that the submanifold is in fact compact. The
result then follows from Theorem 3 [B]. O
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2. The geometry of pseudo-Grassmannian

In this section we review some basic properties about the geometry of pseudo-
Grassmannian. For details one is referred to[Sgs.

Let R}""™ be the ¢ + p + 1)-dimensional pseudo-Euclidean space with ingex
where, for simplicity, we assume that> p. The casen < p can be treated simi-
larly. We choose a pseudo-Euclidean frame figgld . . ., e, ,+1} such that the pseudo-

Euclidean metric oy is given byds? = 3. (wi)? — Z (0a)? = 3 4 ea(wa)?, where
{w1, ..., Wpgpt1}is the dual frame field ofe, ..., enypt1}, & = 1 ande, = —1. Here
and in the following we shall use the following convention on the ranges of indices:

1<i,j,...<n+1 n+2<ap,...<n+p+1;
1<AB,...<n+p+1

The structure equations &,"”** are given by

dey = — E EAWABER,
B
dwy = — E epwap A wp, A+ wpa =0,
B
dwsp = — E ECWAC N WCB.
C

Let GnJrl be the pseudo-Grassmannian of all spacelike- ()- subspace nR”*PH

and Gn+1 the pseudo-Grassmannian of all timeligesubspace wR”J””Jr They are
specific Cartan—Hadamard manifolds, and the canonical Riemannian me¢, ¢n, and
is

p
Gn+1,p

= Z(wai)z'

Let 0 be the origin oy, Let SO(n + p + 1, p) denote the identity component of
the Lorentzian grou@(n + p + 1, p). SO%n + p + 1, p) can be viewed as the manifold
consisting of all pseudo-Euclidean frameSeﬁO'ea), andSOO(n +p+1 p)/SOmn + 1) x
SO(p) can be viewed a&” n+1,p OF 6‘ Any element irG +1p can be represented by a

unitsimple ¢ + 1)-vectores A - -+ A e,,+1, while any element m;nH can be represented
by a unit simplgy-vectore, 12 A - - - A e,4p+1. They are unique up to an action®9(n +
1) x SO(p). The Hodge star operator o prowdes a one to one correspondence between

GnJrl » and Gn+1p The product(, ) on Gn+1p foret A Aeptr1, VIA - Apg1 €
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p . .
G, 1, is defined by
(er A ANeqy1, VI A - Avpyr) = det(e;, v))).

The product orG” can be defined similarly.

n+1l,p
Now we fix a standard pseudo-Euclidean frafag e,} for Ry and takego =

LA ANepil € sz’+17p, 20 =#80=€ny2 A+ Aepppi1l € G,’l’H’p. Then we can span
the spaceliker{ + 1)-subspaceg in a neighborhood oo by n + 1 spacelike vectorg;:

fi=e+ § ZiaCas
o

where ¢;,) are the local coordinates gf By an action ofSO(n + 1) x SO(p) we can
assume that

M“1

(Zia) =
Mp
0

From[6] we know that the normal geodesifr) betweengg andg has local coordinates

tanhQ.17)
(zia(1)) =
tanh@. 1)
0
for real numbers.g, A, ..., A, such tha@{’:1 A,? = 1. This means thaf(r) is spanned by
f1(t) = er +tanh@Quir)enio, ..., fp(t) = e, +tanh@ pt)entpi1,
fp+l =€pt+l, ..., o1 = ent1.

Consequentlyg(r) can also be represented by a unit simple~(1)-vector as following:
g(t) = (coshiit)ey + sinhL1t)e,12) A - - - A (COSh{ yt)e,
+ Sinh()\p[)en+p+1) Neptr1l A N eptl.

Set Ay =Aq—n—1, then it is clear that cosh{r)e1 + sinh(i1t)e,12,...,cosh
(Apt)ep +siNh@pt)eny pi1, €pia, .- -, ent1, SINNQ, 1 2t)e1 + cosh, 4 2t)e, 2, . . ., Sinh
(Angp+1t)ep + coshi, 4 prat)eqspy1 is again a pseudo-Euclidean frame ﬂbff’p“, o)
we have

8(t) = *g(r) = (sinh@,421)e1 + coshiniat)en+2)
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A A(SINhQy g prat)ep + COSNGy 4 prat)enypia) € G,f+1,p~

Thus we have

(g0, g(1)) = (—1) (xgo, #2(1)) = (—1)" (o, 2(1)) = | | coshta).

3. The proof of theorem

We shall complete the proof of theorem in this section.etM” — Si™7 ¢ Ry7+
be ann-dimensional complete spacelike submanifold in de Sitter space Sﬁﬁﬁ, and

e1.. ... ens 11 the local pseudo-Euclidean frame field®ff™”* alongy such that, when
restricted onM”, ey, . . ., e, are tangent td4/” ande,, .1 = ¥ is the position vector o#".
The Gauss mag : M" — sz’+17p is locally defined byg = e1 A - -+ A e,41. In the fol-

lowing we shall also consider the m@8p= %g = €,12 A -+ A ey pp1 s M* — GnJrl -
Now we assume that there exjst- 0 and a unit simplen(+ 1)-vectora=a1 A --- A
ap+1 € GZ+1,p such that the Gauss maysatisfies(g, a) = det(e;, a;)) < p. We extend

n+p+1

ai, ...,ay+1 to a pseudo-Euclidean frarae, .. ., a,4 11 of R}, , and define the pro-

jectionIT : M" — S! by

I(p) =

W(p) + Y _(W(p), da)aa), ¥p € M", 2
VI S (). a)? z

where
:{xeSZﬂ’:(x,aa)zo,n+2§a§n+p+1}

is the totally geodesio-sphere determined bg. A straightforward computation shows
that

1 1

+
1y, hag? A T an))¥?

Z( (X, a0) + > (W ap)*(X. aa) = Y (X, ap) (¥, ag) (¥, ao))aa
B B

dr1(x) =

= (¥ aa)(X, aa)¥r 3

for every tangent field on M", and consequently,
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| X |2 N 1
1+, (han)? (14X, (¥, an)?)?

| drI(X) |2 =

X 4 (X a0)?+ D (X, a) (¥, ap)?

o o, f
— (X, aa) (Y, aa) (X, ap)(V, ap))

__ X 1
LY, a4, (W ag)?)?

XA (X.an)*+ > (X Avragnag)®p. 4)

o a<f

From Section 2 we know that by an action (n + 1) x SO(p) we can assume that
eq = COsh{.yt)ay + sinh@y)aq—,—1 SO that

(g, a) = (_1)[7(&’ ay = (=1 (epr2 A+ A Cntptls Ani2 A -+ A Gngpy1)

=[] coshta). (5)
wherey", A2 = 1 andr € R. Write

g = al + (ag, V)V — Y _(aa, ep)ep,
B

whereal denotes the component @f which is tangent td/". Sinceq, is a unit timelike
vector for alle, we have

1= al P+ (e )2 =Y (dan ep)?
B

and so,
143 Waw? = lawep)® =S 1al P = p+1<Y costf(uat) — p+ L.
o o, o o
(6)
In order to estimate the quantily, costf(x,t) we need the following.

Lemma.Let py2 > 1, ..., tyypr1 > 1 and [[, ue = C. Thend ", u2 < C2+ p -1,
and the equality holds if and onlyyif,, = Cforsome: +2 <ag <n+ p+landu, =1
for anya # «p.
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Proof. The lemma is trivial forC = 1. So we assume that > 1. Without loss of gen-
erality, we can assume that+2 > - -+ > ppt14s > 1, Uny2s = -+ = Unyp+1 = 1 and
Un+2 -+ Unt14s = C, here 1< s < p. Let us maximize

n+1+s
2
f(Mn+2a ceey Mn+1+s) = Z My
a=n+2
Let
n+1+s
_ 2
F(in+2s « -+ Mntlss, 1) = Z Mg + U(C — fnt2 -+ Untits),
a=n+2

whereu is a Langrange multiplier. Then at a critical pointfafine has

0="Fu, =21e — UHnt2 " - Pa—1Matl " Mntlts, R+2=<oa<n+1+s
which implies that

2142 = hns2 - Unt1es = CLL.
Thus at the critical point one has,.2 = - - - = uu4+145s = CY¥*, and the corresponding

critical value off iss - C%/*. Itis easy to see from mathematical analysisthat?/* + p — s
is monotone decreasing #1so we have_, 12 < C? + p — 1, and the equality holds if

andonly ifp,12 = C, ppyg =+ = ppypy1 = 1. O
Now from lemma, (4)—(6) and the assumption thata) < p, we conclude that
| X2 _1XP
dri(x) > > > . 7
| ( ) | - (g, a>2 — )02 ( )

It follows from (7) that/T is a local diffeomorphism. Since ) is a complete Riemannian
metric onM", the same holds for the homothetic metit = (, ) /2. Then, (7) means that
the map

(M, () — (S". ()

increases the distance. If a map, from a connected complete Riemannian mafiiokd
another Riemannian manifold> of the same dimension, increases the distance, then it is
a covering map andif» is completd4, VIII, Lemma 8.1] HencelT is a covering map, but
S’ being simply connected this means tliais in fact a global diffeomorphism between
M" andS}. Hence,M" is diffeomorphic tas”.

Now we want to prove (1). Using the diffeomorphigih: M" — S/ we know that

vol(s") = / ds= [ ms), 8)

sn Mn
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where & stands for the volume element §f. From (2) and (3) it follows that

T*(dS)(X1. ..., Xp)
= det(dT(Xa). .. .. dIT(X,). Gni2. .- - anspia. IT)

1
i (+ Z (W a )2)(n+1)/2 detiXy, ..., Xu, dnt2, .- An+p+1, ¥)
(-1 (z.a)
T+ S, (W, ag)2)r+1/2 AetX1. ... Xy eni2s - enspits V)
o y Ao
= (g, a)
(1, (W ag)?) D)2 dM(X1, ..., Xn)
for tangent vector fields(1, . .., X, of M", where d/ is the volume element af7". In
other words,
m = (g, a)
N " 9)

(1432, (W, ag)?)e+dy2

From (5), (6), (8), and (9) and the lemma we see that

o (g, a) / 1 / 1
vol(s") = /M At 5. W age 2™ = | M= [ M

1
= —vol(M"),
P

and so volf1") < p"vol(S"), and if the equality holds, ther] = O for alle, thus(y, a,) =
constant for alk. It is easy to see thak/” is a totally umbilicaln-sphere with radiug.
Conversely, itM" is a totally umbilicah-sphere with radiug, we certainly have vol¢/") =
o"vol(S™). Similarly,

o (8 a) n
vol(S™) = /M ars. W, aa)z)("+1)/2dM < /M (g, a)dM < pvol(M™),

so vol(M™) > vol(S")/p, and the equality holds if and only {f/, a,) = O for all « and
(g, a) = p. ThusM" is a totally geodesio-sphere angh = 1, and the theorem is proved.
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